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Abstract. Observations of solar wind proton temperatures indicate that the solar wind is heated as 
it moves outward toward the orbit of Earth. This heating, which may be the result of electron heat 
conduction and perhaps MHD waves, has proven difficult to quantify and hence is often neglected 
in MHD models of the solar wind. An alternate approach to finding explicit heating terms for the 
MHD energy equation is to use a polytropic approximation. This paper discusses the properties of 
the polytropic approximation and its application to the solar wind plasma. By using data from the 
Helios 1 spacecraft, an empirical value for the polytropic index of the free-streaming solar wind is 
determined. Various corrections to the data are made to account for velocity gradients, 
nonuniformity in radial sampling, and stream interaction regions. The polytropic index, as derived 
from proton data, is found to be independent of speed state, within statistical error, and has an 
average value of 1.46. If magnetic pressure is included, the polytropic index has an average value 
of 1.58. 

1. Introduction 

Observations near the Sun and at Earth have indicated that the 

solar wind does not expand adiabatically in this region, implying 
that heating of the plasma occurs as it propagates through inter- 
planetary space. An alternate approach to modeling a nonadia- 
batic fluid (or plasma) by using explicit heating terms in an 
energy equation is to utilize the polytropic approximation with a 
nonadiabatic exponent. Section 2 presents a discussion on the 
assumptions and meaning of the polytropic approximation as well 
as the implications for the solar wind. In section 3, data from the 
German spacecraft Helios 1 are used to determine an empirical 
value of the polytropic index of the protons in the free-streaming 
solar wind. Section 4 briefly addresses electrons. A discussion 
of results and conclusions are presented in section 5. 

2. Physical Understanding of the Polytropic 
Equation 

Chandrasekhar [1957] defines a quasi-static (reversible) 
process as one that occurs infinitely slowly so that at any given 
point in time, the system can be assumed to be in a state of 
thermal equilibrium. For a quasi-static process, the first law of 
thermodynamics can be written as follows: 

dQ = der +pdV. (1) 

Q represents the quantity of heat (per unit mass) added to or 
expelled from the system, U is the internal energy per unit mass 
of the system, p is pressure, and V is the specific volume. For an 
ideal gas, U is a function of only the temperature, T. Thus der = 
Cv dT where C v is defined to be the specific heat of the gas at 
constant volume. By definition, a polytropic process is a quasi- 
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static change of state in which the specific heat, c = dQ/dT, is held 
constant [ Chandrasekhar, 1957]. Also for an ideal gas, p V = RT, 

where R = (Cp- c v) is the gas constant. Note that Cp is the 
specific heat at constant pressure. Applying these relations to 
equation (1), replacing the specific volume V with the mass 
density p, and integrating, one obtains the polytropic equation. 

P = const. (2) 
p• 

Here, o• is called the polytropic index and can be written in terms 
of specific heats in the following manner: 

{z = cp - c (3) ß 

C v -- C 

Following the notation used by Parker [1963, 1965] and Priest 
[1982], the polytropic index is represented by the symbol o• rather 
than ¾ (as is more commonly seen) to emphasize the fact that a 
polytropic expansion need not be adiabatic. The symbol ¾ is 
specifically reserved for the ratio of specific heats. ¾ = Cp/Cv and 
is also related to the number of degrees of freedom, f, of the fluid; 
viz., ¾= (.f + 2)/f [ Farris et al., 1991]. Consequently, a polytropic 
expansion or compression is defined as a process in which the 
pressure and density vary according to equation (2). 

All polytropic processes are, in theory, reversible. Furthermore, 
the power index may have any nonnegative value from zero to 
infinity [Van Nostrand's Scientific Encyclopedia, 1958]. An 
isobaric process is represented by o• = 0, and an isometric process 
has o• = ,•. For an isothermal expansion, o• = 1, which implies 
that the heat capacity, c, is infinite. Perhaps the most common 
polytropic approximation employed in models today is the adia- 

batic case. o• = ¾ = Cp/Cv, i.e., c = 0. Since a reversible, adiabatic 
process has constant entropy, this is also referred to as the isen- 
tropic case. If o• is greater than 1, the temperature will decrease as 
the gas expands and increase as the gas is compressed. Also, if o• 
is less than ¾, heat must be supplied to the system in order for the 
fluid to expand [ Van Nostrand's Scientific Encyclopedia, 1958]. 
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Observations of solar wind plasma have provided much infor- 
mation on some of the basic properties of this fluid as it propa- 
gates. Temperature measurements near the Sun and at Earth 
indicate that the solar wind cools as it expands, but does not cool 
rapidly enough to be considered an adiabatic expansion 
[Neugebauer and Snyder, 1966]. From the discussion presented 
above, observations of the solar wind plasma imply a polytropic 
index with a value greater than one but less than the adiabatic 
value. The solar wind plasma is regarded as having 3 degrees of 
freedom, implying ¾ = 5/3. Hence 1 < o• < 5/3 for the solar wind. 

This range of values for the polytropic index of the solar wind 
indicates that although the wind is being heated, the temperature 
falls as it expands. The reason for this is that the rate at which 
heat is added to the plasma is less than the rate at which work is 
done by the plasma in the process of expanding [Van Nostrand's 
Scientific Encyclopedia, 1958]. So how much heat is being added 
to the solar wind? The amount by which o• is less than the 
adiabatic value of 5/3 can give an indication of the amount of 
heating that occurs [Parker, 1963; Belcher, 1971]. In fact, several 
researchers [Parker, 1965; Belcher, 1971; Siscoe and Finley, 
1972; Goldstein and Jola•ii, 1977; Priest, 1982; Habbal, 1985] 
have suggested that a nonadiabatic polytrope may roughly simu- 
late the effects of heat conduction. 

3. An Empirical Determination of the Polytropic 
Index for Solar Wind Protons 

This section discusses the determination of an empirical value 
of the polytropic index for solar wind protons using data from the 
Helios 1 spacecraft. We assume the polytropic relationship 
applies to protons. The intent is not to neglect the effects of 
electrons, but rather to quantify the sum of all heating processes 
on protons through a polytropic index. We will discuss electrons 
in section 4. In what follows we will suppress the use of a p (for 
proton) subscript on all parameters. 

Assuming the solar wind plasma proton parameters, namely 
temperature and number density, have power law relations with 
radial distance, a simple equation for the polytropic index is 
derived from the polytropic equation. Various corrections to the 
data are performed in order to address the effects of velocity 
gradients, nonuniformity in radial sampling, and heating due to 
stream-stream interactions. Using the corrected power indices for 
temperature and number density, we calculate the polytropic 
index for protons for seven solar wind speed states. We assume 
the protons are isotropic in the rest frame of the solar wind. 

For an ideal, isotropic fluid, p = nkT and p = nrn where n repre- 
sents the number density (k represents Boltzmann's constant, and 
m is proton mass). Substituting these expressions into equation 
(2), we reduce the polytropic equation to the form below. 

Tn (1-•) = const. (4) 

Taking the radial derivative of equation (4) and assuming {x to be 
constant, we obtain the following expression (r is radial distance): 

dT dn 

n-• + (1 - Ix) T•r =0. (5) 
The assumption is made [Schwenn, 1983; Freeman, 1988] that the 
proton temperature and number density (T and n) are power law 
relations of the radial distance, r, in the range of the observations; 
viz., 

T• r 4 n o,: F I• 

where/5 is the power index for the proton temperature and [J is the 
power index for the proton number density. Substituting these 
forms for T and n into equation (5) and simplifying yields a 
simple equation for the polytropic index in terms of the power 
indices 15 and 13: 

(6) 
One can easily verify that equation (6) produces the expected 
results for the limiting cases discussed in section 2. In particular, 
for adiabatic, spherically symmetric flow, 15 = 4/3 and [t = 2, 
which yields the expected result of {x = 5/3. 

The data for this calculation are for protons and are in the form 
of 1-hour averages. These data were collected by the Helios 1 
spacecraft [See Rosenbauer et al., 1977] and were obtained from 
the National Space Science Data Center, made available by R. 
Schwenn, F. Neubauer, and coworkers. Helios 1 has a highly 
eccentric orbit around the Sun with aphelion at 0.3 AU and 
perihelion at 1.0 AU. The data for this analysis span the time 
from launch in December 1974 through the year 1980. This 6- 
year period covers roughly one half of a solar cycle. The data set, 
taken as a whole, may be used to predict properties of the "free- 
streaming" solar wind because the large quantity of data causes an 
averaging effect. In other words, transient events that make up 
only a small portion of the data set will be "blended in" with the 
much more frequent events that represent the continuous, quies- 
cent solar wind. With the assumption that the polytropic index is 
constant in the range from 0.3 to 1.0 AU, the polytropic index of 
the free-streaming solar wind can be determined by using the 
Helios 1 data. 

The state of the solar wind is most easily characterized by speed 
[Schwenn, 1983]. Therefore the power indices for proton 
temperature and number density are determined by first sorting 
the data into 100-km/s speed bins and plotting against radial 
distance on a log-log plot. The highest speed range (velocities 
greater than 800 km/s) contains only 61 of the 41,076 data points 
used in this analysis and is found to be statistically unreliable 
throughout the calculations presented in this paper. The proton 
temperature [Schwenn, 1983; Freeman, 1988] and density, in each 
speed range, are both linear on a log-log plot against distance. A 
linear regression analysis is performed for proton temperature and 
number density in each speed range to obtain the power indices. 

As mentioned earlier, three adjustments to the data for proton 
temperature and number density are made to account for the 
effects of nonzero speed gradients, nonuniformity in radial 
sampling, and heating due to stream-stream interactions. The first 
of these refers to the fact that the speed of the solar wind is not 
constant with radial distance but steadily increases [Arya and 
Freeman, 1991 ]. This property of the solar wind speed introduces 
a bias in sorting the data by speed state. Therefore it is prudent to 
normalize the speed data, using the velocity gradients determined 
by Arya and Freeman [ 1991 ], to some common radial distance, 
chosen here to be 1 AU, before sorting the temperature and 
number density data into speed bins. 

The next correction deals with the fact that, due to the elliptical 
orbit of the spacecraft, the number of points in the data set is 
different for different radial distances. At aphelion, Helios 1 
moves slowly and orthogonal to the radial direction; conse- 
quently, the highest density of data points is near 1 AU. The next 
highest density of points is at perihelion because the spacecraft is 
again moving orthogonal to the radial direction. In order to 
compensate for this effect, the data are divided into 0.1-AU bins, 
and the fraction of points in each bin (compared to the total 
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number of points in the data set) is calculated. These fractions are 
used to weight each data point to eliminate any possible biasing 
by radial distance. 

The final correction to the power indices concerns the possible 
heating effects of stream-stream interactions. Although the 
heating effects are predicted to be quite small [Burlaga and 
Ogilvie, 1973; Lopez and Freeman, 1986], this correction is 
performed to ensure that the values for the power indices are 
computed as accurately as possible. A number of computerized 
filters have been employed to remove data points thought to lie 
near stream interaction regions. These filters were designed to 
look at either 1-hour or 6-hour averages of solar wind bulk speed. 
If the data showed a sharp rise or fall in the flow speed, then the 
data at and near this sharp gradient were discarded. This 
approach is similar to that used by Burlaga and Ogilvie [1973], 
Pizzo et al. [1973], and Lopez and Freeman [1986]. However, 
none of these filters could discard the appropriate data satisfacto- 
rily. Consequently, the data in question were removed by hand 
based on plots of 1-hour averages of solar wind speed. Out of 
43,696 hourly averages in the original data set, 2620 were 
removed by the hand-filtering process. 

Table 1 shows the values for the power indices for proton 
temperature and number density, by speed range, after all the 
corrections to the data just described are performed. By using 
equation (6), the values for the polytropic index for each speed 
range are determined. (See column four of Table 1.) As 
mentioned earlier, the highest speed state (>800 kin/s) has statisti- 
cally unreliable results for all parameters due to the small number 
of data points in this range. Except for the highest speed range, 
the value for {z is the same, within statistical error. The average 
value is found to be 1.46 + 0.04. This result suggests that the heat 
flux for both the high- and low-speed streams is the same. Note 
that as the temperature index changes from one solar wind state to 
the next, the power index for density adjusts in such a manner as 
to keep at roughly constant. 

The temperature indices in Table 1 differ from those published 
previously [Schwenn, 1983; Freeman and Lopez, 1985; Lopez and 
Freeman, 1986], particularly for the two lowest speed ranges, 
mainly because the earlier work did not take into account the 
effects of velocity gradients. 

The solar wind magnetic pressure is typically slightly higher 
than the proton thermal pressure. It can be argued that the 
magnetic pressure should be included in the calculation of the 

Table 1. Temperature and Density Indices and the 
Polytropic Index for Several Solar Wind Speed Ranges 

Speed Temperature Density Polytropic 
Range, Index, Index, Index, at 
km/s •5 [5 (at = 1 + 

< 300 -0.93 _+0.22 -2.09 + 0.29 1.44 + 0.12 

300-400 -1.04 _+0.12 -2.13 _+ 0.11 1.49 _+ 0.06 

400-500 -0.99 + 0.12 -2.03 + 0.11 1.49 + 0.07 
500-600 -0.87 + 0.13 - 1.89 + 0.13 1.46 + 0.08 

600-700 -0.81 __+0.13 -1.93 __+ 0.12 1.42 + 0.07 

700-800 -0.86 + 0.28 - 1.88 + 0.23 1.46 + 0.16 

> 800 0.93 + 1.11 -1.95 __+ 1.14 0.53 + 0.63 

The errors in the temperature and density indices represent 1 
standard deviation in the linear regression analysis. 

polytropic index. Suppose that the magnetic pressure is included 
in the polytropic equation (2) so that p = proton pressure + 
magnetic pressure = nkT + (B2/2go).. The polytropic equation 
now has the form shown below (recall @ = trn): 

nkT + BC'/2g o 
= const. (7) 

n 

As with number density and temperature, let the magnetic field 
magnitude, B, have a power law relation with radial distance, i.e., 

Bo• ?'. 

Applying these forms for n, T, and B to equation (7), taking the 
radial derivative, and rearranging, we obtain the following 
expression: 

ct[5- 23, nkT 
= -- plasma beta (8) 

Recall that at is the polytropic index, and •5, [5, and 3. are the power 
indices for proton temperature, number density, and magnetic 
field magnitude, respectively. The values for •5 and [5 have 
already been determined and are shown in Table 1. The Helios 1 
magnetometer data [Musmann et al., 1977] are used to calculate 
the power index for the magnetic field (3.) in the same manner, 
including all the same corrections, as the indices for the density 
and temperature are obtained from the plasma data. The results, 
by speed state, are shown in column two of Table 2. Column 
three of the same table shows the calculated values of the plasma 
beta at 1 AU, also determined by using the data from the Helios 1 
spacecraft. These values are substituted into equation (8), and the 
new values for the polytropic index are determined for each speed 
range. The results are shown in Table 2. As in the case discussed 
previously, except for the highest speed range, the polytropic 
index is independent of speed state, within statistical error. The 
average value for at is 1.58 + 0.06. Note that values for this 
polytropic index for several speed states are statistically equal to 
the adiabatic value of 5/3. However, the average value is slightly 
more than 1 standard deviation away from the adiabatic value. It 
should be pointed out that the data set used to calculate the 
quantities in Table 2 is not identical to the data set used to calcu- 
late the polytropic index considering particle pressure only, 
because the magnetometer and plasma experiments were not 
always operational during the same time periods. 

An attempt has been made to determine the polytropic index 
directly from log-log plots of pressure versus number density. 

Table 2. Parameters Involving the Polytropic Index That 
Includes Magnetic Pressure 

Magnetic Field Polytropic 
Speed Range, Index, Plasma Beta Index, 

km/s 3. nkT/(B 2/2g o) at 

< 300 -1.74 + 0.17 0.48 + 0.20 1.59 + 0.21 

300-400 -1.65 + 0.09 0.44 + 0.06 1.53 + 0.09 

400-500 -1.72 + 0.09 0.47 + 0.07 1.63 + 0.09 
500-600 -1.71 + 0.09 0.60 + 0.09 1.68 + 0.11 

600-700 -1.57 + 0.10 0.65 + 0.10 1.55 + 0.10 

700-800 -1.45 + 0.20 0.61 + 0.18 1.51 + 0.20 

> 800 -1.64 + 0.28 0.16 + 0.16 1.52 + 0.86 
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After the temperature and density data are normalized to 1 AU, 
using the corrected power indices •i and 13, the data points are 
found to scatter in all directions about a central point. The scatter 
is so great that an accurate determination of the polytropic index 
is impossible. It is not surprising that this method is less accurate 
than the process described earlier. Zhu [1990] discusses this 
approach as applied to calculating the polytropic index for the 
Earth's plasma sheet. He states that the scatter in log-log plots of 
pressure (or temperature) against number density is caused by 
variations of the specific entropy from one flux tube to another 
and that this scatter will affect the determination of the polytropic 
index. Consequently, the present process for calculating the 
polytropic index is presumed to be more accurate than the "log p 
versus log n" approach for the case of the solar wind. 

As already stated, the average value for the polytropic index for 
solar wind protons is 1.46, neglecting the (unreliable) highest 
speed range. If the magnetic pressure is included, the average 
value for {x is 1.58. As predicted, these values are less than the 
adiabatic value of 5/3 (1.66) but greater than the isothermal value 
of 1. This result conforms to the physical understanding of the 
polytropic equation and to in situ observations made of the solar 
wind. Specifically, heat is added to the plasma as it expands, yet 
the temperature declines with distance from the Sun. However, 
the empirical determination of tx moves one step beyond what is 
already known by providing a quantitative, statistical representa- 
tion of the heating that exists in the solar wind. Furthermore, the 
heating is found to be independent of solar wind state, within 
statistical accuracy. 

Now that the statistical polytropic index has been calculated, 
only the "constant" in equation (2) remains unknown. Setting p = 
ran, where m is the proton mass, equation (2) can be written as 
follows: 

P--- = const -- C (9) 

The constant C can be determined for protons at any specified 
point in the solar wind using the values for the pressure and 
number density corresponding to the specified point. Column two 
of Table 3 shows the values for C, by speed state, calculated at 0.3 
AU. The values for the thermal pressure (p = nkT), number 
density, and polytropic index appropriate to each speed range are 
used to determine C. Because the polytropic index for the highest 
speed range (>800 km/s) is so unreliable, the constant for this 
range cannot be accurately determined. Column three of the same 
table shows a similar calculation at 1.0 AU. Comparing these two 
columns reveals that, for a given speed range, C does not vary 
significantly from 0.3 to 1.0 AU. On the other hand, the constant 
varies considerably from one speed state to another. Columns 

four and five of Table 3 display the values for C (at 0.3 and 1.0 
AU, respectively) when magnetic pressure is included (p = nkT + 
B2/2go). Again, C is roughly constant with radial distance, as 
expected, yet the values change significantly with speed range. 

With the empirical determination of both constants (ix and C) in 
equation (9), the polytropic relation for solar wind protons is 
completely defined. The polytropic equation may be used to 
close a set of equations describing the solar wind plasma, rather 
than employing a more complicated energy equation. 

4. Solar Wind Electrons 

A single-fluid thermodynamic description of the solar wind 
polytropic index is not complete without a specification of the 
electron contribution. Treatment of the electrons is more compli- 
cated because of the core and halo components and their 
anisotropy. They probably heat the ions significantly and also 
contribute to the total pressure. In the foregoing we have treated 
the proton gas alone. A description in terms of a polytropic index 
for the protons is still useful, since the polytropic index gives us a 
quantitative determination of the proton heating independent of 
the heating source. 

The Helios spacecraft instrumentation included electron detec- 
tors; however, to the best of our knowledge, a comprehensive set 
of hourly averages of electron parameters versus radial distance 
has not been made available, and so a comparable analysis is not 
possible for electrons at this time. 

Phillips and Gosling [1990, 1991 ], have developed a simple 
model of core electron transport, using the Chew et al. [1956] 
relations that neglects the electron heat flux but focuses on the 
roles of collisions and magnetic field geometry. The model is 
based on ISEE 3 data, an assumed temperature at the Sun, and 
spherical expansion. They find an adiabatic polytropic index for a 
collision-dominated electron gas and flatter radial gradients for 
the core temperature for smaller (more realistic) collision rates, 
but no specific values for tx are given for the latter case. 

5. Conclusions 

We have obtained a statistical value for the polytropic index for 
solar wind protons, using data from the Helios 1 spacecraft. This 
empirical value is determined by using radial distance power law 
indices for the proton temperature and number density in a new 
relationship for tx that depends only on these indices. The data 
are first corrected for stream-stream interactions and other effects 

and sorted by bulk speed. The values for the polytropic index for 
the several solar wind speed states are found to be independent of 

Table 3. Values for the Constant C in Equation (9) by Speed State 

0.3 AU 1.0 AU 0.3 AU 

Speed Range, p - nkT, p - nkT, p - nkT, B 2/2go, 
km/s 10 -22 N m 3a-2 10 -22 N m 3a-2 10 -22 N m 3•-2 

1.0 AU 

p - nkT, B 2/2go, 
10 -• N m 3•-• 

> 300 1.83 + 1.30 1.83 + 0.67 0.32 + 0.45 0.50 + 0.31 

300-400 2.32 + 0.76 2.32 + 0.34 3.63 + 1.76 3.77 + 0.79 

400-500 5.89 + 1.92 5.89 + 0.82 1.46 + 0.75 2.06 + 0.41 

500-600 18.3 + 6.15 18.3 + 2.46 0.71 +0.42 1.78 + 0.36 

600-700 51.1 + 16.1 51.1 + 6.12 12.8 + 6.13 18.7 + 3.02 

700-800 33.5 + 22.2 33.5 __+ 7.95 36.4 + 31.5 38.9 + 11.4 
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speed to within statistical errors. The average value of at is found 
to be 1.46 + 0.04. If the effects of magnetic pressure are included, 
the average value becomes 1.58 + 06. The constant C in the 
polytropic relation is also determined. This constant depends on 
speed state but is independent of radial distance. 
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