HELIOS mini- Worksop, Köln, June 2016

Solar Orbiter

Exploring the Sun-Heliosphere Connection

Milan Maksimovic - CNRS \& LESIA Observatoire de Paris France

Solar Orbiter
 Exploring the Sun-Heliosphere Connection

Solar Orbiter

- First medium-class mission of ESA's Cosmic Vision 2015-2025 programme, implemented jointly with NASA. Launch date : Oct 2018

- Dedicated payload of 10 remote-sensing and in-situ instruments measuring from the photosphere into the solar wind

Talk Outline

- Science Objectives and Mission Overview
- Spacecraft \& Payload
- Science Synergies
- Brief description of the RPW instrument

Solar Orbiter Science Focus:

How does the Sun create and control the Heliosphere and why does solar activity change with time?
\Rightarrow What drives the solar wind and where does the coronal magnetic field originate from?
\Rightarrow How do solar transients drive heliospheric variability?
\Rightarrow How do solar eruptions produce energetic particle radiation that fills the heliosphere?
\Rightarrow How does the solar dynamo work and drive connections between the Sun and the heliosphere?

SOLAR ORBITER

Solar Orbiter $=$ Linking in-situ
and remote-sensing observations

Solar Orbiter

 Exploring the Sun-Heliosphere Connection
Nent cesa

Solar Orbiter

 Exploring the Sun-Heliosphere Connection
cesa

Solar Orbiter Exploring the Sun-Heliosphere Connection

NASA
 esa

Solar Orbiter

 Exploring the Sun-Heliosphere Connection
NASA
 esa

Mission Profile

July 2017 Launch: Solar Distance

July 2017 Launch: Solar Latitude

Payload

In-Situ Instruments			
EPD	Energetic Particle Detector	J. Rodríguez- Pacheco	Composition, timing and distribution functions of energetic particles
MAG	Magnetometer	T. Horbury Ans	High-precision measurements of the heliospheric magnetic field
RPW	Radio \& Plasma Waves	M. Maksimovic	Electromagnetic and electrostatic waves, magnetic and electric fields at high time resolution
SWA	Solar Wind Analyser	C. Owen ElV	Sampling protons, electrons and heavy ions in the solar wind
Remote-Sensing Instruments			
EUI	Extreme Ultraviolet Imager	P. Rochus	High-resolution and full-disk EUV imaging of the ondisk corona
METIS	Multi-Element Telescope for Imaging and Spectroscopy	E. Antonucci	Imaging and spectroscopy of the off-disk corona
PHI	Polarimetric \& Helioseismic Imager	S. Solanki	High-resolution vector magnetic field, line-of-sight velocity in photosphere, visible imaging
SoloHI	Heliospheric Imager	R. Howard	Wide-field visible imaging of the solar off-disk corona
SPICE	Spectral Imaging of the Coronal Environment	European-led facility instrument	EUV spectroscopy of the solar disk and near-Sun corona
STIX	Spectrometer/Telescope for Imaging X -rays	S. Krucker	Imaging spectroscopy of solar X-ray emission

SOLAR ORBITER

The Spacecraft

Synergies with Solar Probe Plus

Cesa

Cesa SOLAR ORBITER

Synergy between Solar Orbiter and other Observatories

SOLAR ORBITER

Joint Observations Solar Orbiter - Solar Probe Plus

Example of alignments/quadratures:

Radial alignments:
SO and SPP observe the same SW plasma

IMF alignments:
SO and SPP connect to the same IMF footpoint

SO remote-sensing and SPP in-situ @ ≥ 9.5 Rs

A joint WG has been established to maximize the opportunities provided by the contemporaneous presence of both missions in the inner heliosphere.

Solar Orbiter

Exploring the Sun-Heliosphere Connection

Nen cesa

RPW

I'Obsejvatoire Lesia

